Community Detection in Multi-relational Bibliographic Networks
نویسندگان
چکیده
In this paper, we introduce a community detection approach from heterogeneous multi-relational network which incorporate the multiple types of objects and relationships, derived from a bibliographic networks. The proposed approach performs firstly by constructing the relation context family (RCF) to represent the different objects and relations in the multi-relational bibliographic networks using the Relational Concept Analysis (RCA) methods; and secondly by exploring such RCF for community detection. Experiments performed on a dataset of academic publications from the Computer Science domain enhance the effectiveness of our proposal and open promising issues.
منابع مشابه
A Framework for Community Detection in Heterogeneous Multi-Relational Networks
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is bas...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملCommunity Detection in Multi-relational Social Networks
Multi-relational networks are ubiquitous in many fields such as bibliography, twitter, and healthcare. There have been many studies in the literature targeting at discovering communities from social networks. However, most of them have focused on single-relational networks. A hint of methods detected communities from multi-relational networks by converting them to single-relational networks fir...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملLearning Collective Behavior in Multi - Relational Networks
With the rapid expansion of the Internet and WWW, the problem of analyzing social media data has received an increasing amount of attention in the past decade. The boom in social media platforms offers many possibilities to study human collective behavior and interactions on an unprecedented scale. In the past, much work has been done on the problem of learning from networked data with homogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016